Online Recovery Guarantees and Analytical Results for OMP
نویسندگان
چکیده
Orthogonal Matching Pursuit (OMP) is a simple, yet empirically competitive algorithm for sparse recovery. Recent developments have shown that OMP guarantees exact recovery of K-sparse signals with K or more than K iterations if the observation matrix satisfies the restricted isometry property (RIP) with some conditions. We develop RIP-based online guarantees for recovery of a K-sparse signal with more than K OMP iterations. Though these guarantees cannot be generalized to all sparse signals a priori, we show that they can still hold online when the state-of-the-art K-step recovery guarantees fail. In addition, we present bounds on the number of correct and false indices in the support estimate for the derived condition to be less restrictive than the K-step guarantees. Under these bounds, this condition guarantees exact recovery of a K-sparse signal within 3 2 K iterations, which is much less than the number of steps required for the state-of-the-art exact recovery guarantees with more than K steps. Moreover, we present phase transitions of OMP in comparison to basis pursuit and subspace pursuit, which are obtained after extensive recovery simulations involving different sparse signal types. Finally, we empirically analyse the number of false indices in the support estimate, which indicates that these do not violate the developed upper bound in practice.
منابع مشابه
Improving A*OMP: Theoretical and Empirical Analyses With a Novel Dynamic Cost Model
Best-first search has been recently utilized for compressed sensing (CS) by the A orthogonal matching pursuit (AOMP) algorithm. In this work, we concentrate on theoretical and empirical analyses of AOMP. We present a restricted isometry property (RIP) based general condition for exact recovery of sparse signals via AOMP. In addition, we develop online guarantees which promise improved recovery ...
متن کاملOn the Theoretical Analysis of Orthogonal Matching Pursuit with Termination Based on the Residue
Orthogonal Matching Pursuit (OMP) is a simple, yet empirically competitive algorithm for sparse recovery. Recent developments have shown that OMP guarantees exact recovery of K-sparse signals in K iterations if the observation matrix Φ satisfies the Restricted Isometry Property (RIP) with Restricted Isometry Constant (RIC) δK+1 < 1
متن کاملOrthogonal Matching Pursuit with Replacement
In this paper, we consider the problem of compressed sensing where the goal is to recover all sparsevectors using a small number of fixed linear measurements. For this problem, we propose a novelpartial hard-thresholding operator that leads to a general family of iterative algorithms. While oneextreme of the family yields well known hard thresholding algorithms like ITI and HTP[17, ...
متن کاملLeast Support Orthogonal Matching Pursuit (LS- OMP) Recovery method for Invisible Watermarking Image
In this paper a watermark embedding and recovery technique based on the compressed sensing theorem is proposed. Both host and watermark images are sparsified using DWT. In recovery process, a new method called Least Support Matching Pursuit (LS-OMP) is used to recover the watermark and the host images in clean conditions. LS-OMP algorithm adaptively chooses optimum L (Least Part of support), at...
متن کاملCoherence-based Partial Exact Recovery Condition for OMP/OLS
We address the exact recovery of the support of a k-sparse vector with Orthogonal Matching Pursuit (OMP) and Orthogonal Least Squares (OLS) in a noiseless setting. We consider the scenario where OMP/OLS have selected good atoms during the first l iterations (l < k) and derive a new sufficient and worst-case necessary condition for their success in k steps. Our result is based on the coherence μ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012